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Abstract 

An increasing number of homes with existing photovoltaic (PV) energy systems have sold in the 

U.S., yet relatively little research exists that estimates the marginal impacts of those PV systems 

on home sales prices.  A clearer understanding of these effects might influence the decisions of 

homeowners considering installing PV on their home or selling their home with PV already 

installed, of home buyers considering purchasing a home with PV already installed, and of new 

home builders considering installing PV on their production homes. This research analyzes a 

large dataset of California homes that sold from 2000 through mid-2009 with PV installed.  

Across a large number of hedonic and repeat sales model specifications and robustness tests, the 

analysis finds strong evidence that California homes with PV systems have sold for a premium 

over comparable homes without PV systems.  The effects range, on average, from approximately 

$3.9 to $6.4 per installed watt (DC) of PV, with most coalescing near $5.5/watt, which 

corresponds to a home sales price premium of approximately $17,000 for a relatively new 3,100 

watt PV system (the average size of PV systems in the study).  These average sales price 

premiums appear to be comparable to the investment that homeowners have made to install PV 

systems in California, which from 2001 through 2009 averaged approximately $5/watt (DC), and 

homeowners with PV also benefit from electricity cost savings after PV system installation and 

prior to home sale.  When expressed as a ratio of the sales price premium to estimated annual 

electricity cost savings associated with PV, an average ratio of 14:1 to 22:1 can be calculated; 

these results are consistent with those of the more-extensive existing literature on the impact of 

energy efficiency (and energy cost savings more generally) on home sales prices. The analysis 

also finds - as expected - that sales price premiums decline as PV systems age.  Additionally, 

when the data are split between new and existing homes, a large disparity in premiums is 

discovered: the research finds that new homes with PV in California have demonstrated average 

premiums of $2.3-2.6/watt, while the average premium for existing homes with PV has been 

more than $6/watt.  One of several possible reasons for the lower premium for new homes is that 

new home builders may also gain value from PV as a market differentiator, and have therefore 

often tended to sell PV as a standard (as opposed to an optional) product on their homes and 

perhaps been willing to accept a lower premium in return for faster sales velocity. Further 

research is warranted in this area, as well as a number of other areas that are highlighted.  
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1. Introduction 

In calendar year 2010, approximately 880 megawatts (MW)1

 

 of grid-connected solar 

photovoltaic (PV) energy systems were installed in the U.S. (of which approximately 30% were 

residential), up from 435 MW installed in 2009, yielding a cumulative total of 2,100 MW (SEIA 

& GTM, 2011).  California has been and continues to be the country’s largest market for PV, 

with nearly 1000 MW of cumulative capacity.  California is also approaching 100,000 individual 

PV systems installed, more than 90% of which are residential.  An increasing number of these 

homes with PV have sold, yet to date, relatively little research has been conducted to estimate the 

existence and level of any premium to sales prices that the PV systems may have generated.  One 

of the primary incentives for homeowners to install a PV system on their home, or for home 

buyers to purchase a home with a PV system already installed, is to reduce their electricity bills.  

However, homeowners cannot always predict if they will own their home for enough time to 

fully recoup their PV system investment through electricity bill savings. The decision to install a 

PV system or purchase a home with a PV system already installed may therefore be predicated, 

at least in part, on the assumption that a portion of any incremental investment in PV will be 

returned at the time of the home’s subsequent sale through a higher sales price.  Some in the 

solar industry have recognized this potential premium to home sales prices, and, in the absence 

of having solid research on PV premiums, have used related literature on the impact of energy 

efficiency investments and energy bill savings on home prices as a proxy for making the claim 

that residential PV systems can increase sales prices (e.g., Black, 2010). 

The basis for making the claim that an installed PV system may produce higher residential 

selling prices is grounded in the theory that a reduction in the carrying cost of a home will 

translate, ceteris paribus, into the willingness of a buyer to pay more for that home.  Underlying 

this notion is effectively a present value calculation of a stream of savings associated with the 

                                                 
1 All references to the size of PV systems in this paper, unless otherwise noted, are reported in terms of direct 
current (DC) watts under standard test conditions (STC).  This convention was used to conform to the most-common 
reporting conventions used outside of California.  In California, PV systems sizes are often referred to using the 
California Energy Commission Alternating Current (CEC-AC) rating convention, which is approximately a multiple 
of 0.83 of the DC-STC convention, but depends on a variety of factors including inverter efficiency and realistic 
operating efficiencies for panels.  A discussion of the differences between these two conventions and how 
conversions can be made between them is offered in Appendix A of Barbose et al., 2010. 
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reduced electricity bills of PV homes, which can be capitalized into the value of the home.  

Along these lines, a number of studies have shown that residential selling prices are positively 

correlated with lower energy bills, most often attributed to energy related home improvements, 

such as energy efficiency investments (Johnson and Kaserman, 1983; Longstreth et al., 1984; 

Laquatra, 1986; Dinan and Miranowski, 1989; Horowitz and Haeri, 1990; Nevin and Watson, 

1998; Nevin et al., 1999).  The increased residential sales prices associated with lower energy 

bills and energy efficiency measures might be expected to apply to PV as well.  Some 

homeowners have stated as much in surveys (e.g., CEC, 2002; McCabe and Merry, 2010), 

though the empirical evidence supporting such claims is limited in scope.  Farhar et al. (2004a; 

2008) tracked repeat sales of 15 “high performance” energy efficient homes with PV installed 

from one subdivision in San Diego and found evidence of higher appreciation rates, using simple 

averages, for these homes over comparable homes (n=12).  More recently, Dastrop et al. (2010) 

used a hedonic analysis to investigate the selling prices of 279 homes with PV installed in the 

San Diego, California metropolitan area, finding clear evidence of PV premiums that averaged 

approximately 3% of the total sales price of non-PV homes, which translates into $4.4 per 

installed PV watt (DC).   

 

In addition to energy savings, higher selling prices might be correlated with a “cachet value” 

based on the “green” attributes that come bundled with energy-related improvements (e.g., 

helping combat global warming, impressing the neighbors, etc.).  A number of recent papers 

have investigated this correlation.  Eichholtz et al. (2009, 2011) analyzed commercial green 

properties in the U.S, and Brounen and Kok (2010) and Griffin et al. (2009) analyzed green 

labeled homes in the Netherlands and Portland, Oregon, respectively, each finding premiums, 

which, in some cases, exceeded the energy savings (Eichholtz et al., 2009, 2011; Brounen and 

Kok, 2010).  Specifically related to PV, Dastrop et al. (2010) found higher premiums in 

communities with a greater share of Toyota Prius owners and college grads, indicating, 

potentially, the presence of a cachet value to the systems over and above energy savings.  It is 

therefore reasonable to believe that buyers of PV homes might price both the energy savings and 

the green cachet into their purchase decisions.   
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Of course there is both a buyer and

 

 a seller in any transaction, and the sellers of PV homes might 

be driven by different motivations than the buyers.  Specifically, recouping the net installed cost 

of the PV system (i.e., the cost of PV installation after deducting any available state and federal 

incentives) might be one driver for sellers.  In California, the average net installed cost of 

residential PV hovered near $5/watt (DC) from 2001 through 2009 (Barbose et al., 2010).  

Adding slightly to the complexity, the average net installed cost of PV systems has varied to 

some degree by the type of home, with PV systems installed on new homes in California 

enjoying approximately a $1/watt lower average installed cost than PV systems installed on 

existing homes in retrofit applications (Barbose et al., 2010).  Further, sellers of new homes with 

PV (i.e., new home developers) might be reluctant to aggressively increase home sale prices for 

installed PV systems because of the burgeoning state of the market for PV homes and concern 

that more aggressive pricing might slow home sales, especially if PV is offered as a standard (not 

optional) product feature (Farhar and Coburn, 2006).  At the same time, the possible positive 

impact of PV on product differentiation and sales velocity may make new home developers 

willing to sell PV at below the net installed cost of the system.  After all, some studies that have 

investigated whether homes with PV (often coupled with energy efficient features) sell faster 

than comparable homes without PV have found evidence of increased velocity due to product 

differentiation (Dakin et al., 2008; SunPower, 2008). Finally, as PV systems age, and sellers (i.e., 

homeowners) recoup a portion of their initial investment in the form of energy bill savings (and, 

related, the PV system’s lifespan decreases), the need (and ability) to recoup the full initial 

investment at the time of home sale might decrease.  On net, it stands to reason that premiums 

for PV on new homes might be lower than those for existing homes, and that older PV systems 

might garner lower premiums than newer PV systems of the same size. 

Though a link between selling prices and some combination of energy cost savings, green cachet, 

recouping the net installed cost of PV, seller attributes, and PV system age likely exists, the 

existing empirical literature in this area, as discussed earlier, has largely focused on either energy 

efficiency in residential and commercial settings, or PV in residential settings but in a limited 

geographic area (San Diego), with relatively small sample sizes.  Therefore, to date, establishing 

a reliable estimate for the PV premiums that may exist across a wide market of homes has not 
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been possible.  Moreover, establishing premiums for new versus existing homes with PV has not 

yet been addressed. 

 

Additionally, research has not investigated whether there are increasing or decreasing returns on 

larger PV systems, and/or larger homes with the same sized PV systems, nor has research been 

conducted that investigates whether older PV systems garner lower premiums.   In the case of 

returns to scale on larger PV systems, it is not unreasonable to expect that any increase in value 

for PV homes may be non-linear as it relates to PV system size.  For example, if larger PV 

systems push residents into lower electricity price tiers2

 

, energy bill savings could be diminished 

on the margin as PV system size increases.  This, in turn, might translate into smaller percentage 

increases in residential selling prices as PV systems increase in size, and therefore a decreasing 

return to scale.  Larger PV systems might also enjoy some economies of scale in installation 

costs, which, in turn, might translate into lower marginal premiums at the time of home sale as 

systems increase in size – a decreasing return to scale.  Additionally, “cachet value”, to the 

degree that it exists, is likely to be somewhat insensitive to system size, and therefore might act 

as an additional driver to decreasing returns to scale.  Somewhat analogously, PV premiums may 

be related to the number of square feet of living area in the home.  Potentially, as homes increase 

in size, energy use can also be expected to increase, leading homeowners to be subjected to 

higher priced electricity rate tiers and therefore greater energy bill savings for similarly sized PV 

systems.  Finally, as discussed previously, as PV systems age, and both a portion of the initial 

investment is recouped and the expected life and operating efficiency of the systems decrease, 

home sales price premiums might be expected to decline. 

To explore these possible relationships, we investigate the residential selling prices across the 

state of California of approximately 2,000 homes with existing PV systems against a comparable 

set of approximately 70,000 non-PV homes.  The sample is drawn from 31 California counties, 

with PV home sales transaction dates of 2000 through mid-2009.  We apply a variety of hedonic 

pricing (and repeat sales) models and sample sets to test and bound the possible effects of PV on 

residential sales prices and to increase the confidence of the findings.  Using these tools, we also 
                                                 
2 Many California electric utilities provide service under tiered residential rates that charge progressively higher 
prices for energy as more of it is used.   
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explore whether the effects of PV systems on home prices are impacted by whether the home is 

new or existing, by the size of either the PV system or the home itself, and finally by how old the 

PV system is when the home sells.3  It should be stated that this research is not

 

 intended to 

disentangle the specific effects of energy savings, green cachet, recovery of the cost of 

installation, or seller motivations, but rather to establish credible estimates of aggregate PV 

residential sales price effects.   

The paper begins with a discussion of the data used for the analyses (Section 2).  This is 

followed by a discussion of the empirical basis for the study (Section 3), where the variety of 

models and sample sets are detailed. The paper then turns to a discussion of the results and their 

potential implications (Section 4), and finally offers some concluding remarks with 

recommendations for future research (Section 5).  

  

                                                 
3 Due to the limited sample of PV home sales in many individual years, the results presented in this report reflect 
average impacts over the entire 2000-09 period (after controlling for housing market fluctuations). 
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2. Data Overview 

To estimate the models described later, a dataset of California homes is used that joins the 

following five different sets of data: (1) PV home addresses and system information from three 

organizations that have offered financial incentives to PV system owners in the state; (2) real 

estate information that is matched to those addresses and that also includes the addresses of and 

information on non-PV homes nearby; (3) home price index data that allow inflation adjustments 

of sale prices to 2009 dollars; (4) locational data to map the homes with respect to nearby 

neighborhood/environmental influences; and (5) elevation data to be used as a proxy for “scenic 

vista.”  Each of these data sources is described below, as are the data processing steps employed, 

and the resulting sample dataset. 

2.1.  Data Sources 

The California Energy Commission (CEC), the California Public Utilities Commission (CPUC), 

and the Sacramento Municipal Utility District (SMUD) each provide financial incentives under 

different programs to encourage the installation of PV systems in residential applications, and 

therefore have addresses for virtually all of those systems, as well as accompanying data on the 

PV systems.4

 

  Through these programs, Berkeley Laboratory was provided information on 

approximately 42,000 homes where PV was installed, only a fraction of which (approximately 

9%) subsequently sold with the PV system in place.  The data provided included: address (street, 

street number, city, state and zip); incentive application and PV system install and operational 

dates; PV system size; and delineations as to whether the home was new or existing at the time 

the PV system was installed (where available). 

                                                 
4 The CEC and CPUC have both been collecting data on PV systems installed on homes in the utility service areas 
of investor owned utilities (e.g., PG&E, SCE, SDG&E) for which they have provided incentives, as have some of 
California’s publicly owned utilities (e.g., SMUD) that offer similar incentives.  The CEC began administering its 
incentive program in 1998, and provided rebates to systems of various sizes for both residential and commercial 
customers.  The CPUC began its program in 2001, initially focusing on commercial systems over 30 kW in size.  In 
January 2007, however, the CEC began concentrating its efforts on new residential construction through its New 
Solar Home Partnership program, and the CPUC took over the administration of residential retrofit systems through 
the California Solar Initiative program.  Separately, SMUD has operated a long-standing residential solar rebate 
program, but of smaller size than the efforts of the CEC and CPUC.   



   

 

7 

These addresses were then matched to addresses as maintained by Core Logic (CL)5

• address (e.g., street, street number, city, state and zip+4 code);  

, which they 

aggregate from both the California county assessment and deed recorder offices.  Once matched, 

CL provided real estate information on each of the California PV homes, as well as similar 

information on approximately 150,000 non-PV homes that were located in the same (census) 

block group and/or subdivision as the matched PV homes.  The data for both of these sets of 

homes included:  

• most recent (“second”) sale date and amount;  
• previous (“first”) sale date and amount (if applicable);  
• home characteristics (where available) (e.g., acres, square feet of living area, bathrooms, 

and year built);  
• assessed value;  
• parcel land use (e.g., commercial, residential);  
• structure type (e.g., single family residence, condominium, duplex);  
• housing subdivision name (if applicable)6

• census tract and census block group.   
; and 

 

These data, along with the PV incentive provider data, allowed us to determine if a home sold 

after a PV system was installed ("second" sale).  3,657 such homes were identified in total, and 

these homes, therefore, represent the possible sample of homes on which our analysis focused.  

A subset of these data for which "first" sale information was available and for which a PV 

system had not yet been installed as of this “first” sale, were culled out.  These “repeat sales” 

were also used in the analysis, as will be discussed in Section 3.   

 

In addition to the PV and real estate data, Berkeley Laboratory obtained from Fiserv a zip-code-

level weighted repeat sales index of housing prices in California from 1970 through mid-2009, 

by quarter.  These indices, where data were available, were differentiated between low, middle, 

                                                 
5 More information about this product can be obtained from http://www.corelogic.com/.  Note that Core Logic, Inc. 
was formerly known as First American Core Logic.   
6 In some cases the same subdivisions were referred to using slightly different names (e.g., “Maple Tree Estates” & 
“Maple Trees Estates”).  Therefore, an iterative process of matching based on the names, the zip code, and the 
census tract were used to create “common” subdivision names, which were then used in the models, as discussed 
later. 

http://www.corelogic.com/�
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and high home price tiers, to accommodate the different appreciation/depreciation rates of 

market segments.  Using these indices, all sale prices were adjusted to Q1, 2009 prices.7

 

   

From Sammamish Data, Berkeley Laboratory purchased x/y coordinates for each zip+4 code, 

which allowed the mapping of addresses to street level accuracy.8  Additionally, Berkeley 

Laboratory obtained from the California Natural Resources Agency (via the California 

Environmental Resources Evaluation System, CERES) a 30 meter level Digital Elevation Map 

(DEM) for the state of California.9

2.2.  Data Processing 

  Combining these latter two sets of data, a street level 

elevation could be obtained for each home in the dataset, which allowed the construction of a 

variable defined as the elevation of a home relative to its (census) block group.  This relative 

elevation served as a proxy for “scenic vista”, a variable used in the analysis. 

Data cleaning and preparation for final analysis was a multifaceted process involving selecting 

transactions where all of the required data fields were fully populated, determining if sales of PV 

homes occurred after the PV system was installed, matching the homes to the appropriate index, 

ensuring the populated fields were appropriately coded, and finally, eliminating obviously 

suspicious observations (e.g., not arms length transactions, outliers, etc.).  Initially provided were 

a total of 150,000 detached single family residential sale records without PV and a total of 3,657 

with PV.  These totals, however, were substantially reduced (by approximately 65,000 records, 

1,400 of which were PV sales) because of missing/erroneous core characteristic data (e.g., sale 

date, sale price, year built, square feet).10

                                                 
7 The inflation adjustment instrument used for this analysis is the Fiserv Case-Shiller Index.  This index is a 
weighted repeat sales index, accumulated quarterly at, optimally, the zip code level over three home price tiers (e.g., 
low, middle and high prices).  More information can be found at: 

  Additionally, the final dataset was reduced (by 

approximately 14,000 records, 300 of which were PV sales) because some sales occurred outside 

the range of the index that was provided (January 1970 to June 2009).  Moreover, to focus our 

analysis on more-typical California homes and minimize the impact of outliers or potential data-

http://www.caseshiller.fiserv.com/indexes.aspx  
8 More information about this product can be obtained from http://www.sammdata.com/  
9 More information about this product can be obtained from http://www.ceres.ca.gov/  
10 Examples of “erroneous” data might include a year built or sale date that is in the future (e.g., “2109” or “Jan 1, 
2015”, respectively), or large groups of homes that were listed at the same price in the same year in the same block 
group that were thought to be “bulk” sales and therefore not valid for our purposes.   

http://www.caseshiller.fiserv.com/indexes.aspx�
http://www.sammdata.com/�
http://www.ceres.ca.gov/�
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entry errors on our results, observations not

Table 1

 meeting the following criteria were screened out (see 

 for variable descriptions):  

• the inflation adjusted most recent (second) sale price (asp2) is between $85,000 and 
$2,500,000;11

• the number of square feet (sqft) is greater than 750;  
  

• asp2 divided by sqft is between $40 and $1,000;  
• the number of acres is less than 25 and greater than sqft divided by 43,560 (where one 

acre equals 43,560 sqft);12

• the year the home was built (yrbuilt) is greater than 1900;  
  

• the age of the home (in years) at the time of the most recent sale (ages2) is greater than or 
equal to negative one;  

• the number of bathrooms (baths) is greater than zero and less than ten;  
• the size of the PV system (size) is greater than 0.5 and less than 10 kilowatts (kW);  
• each block group contains at least one PV home sale and one non-PV home sale; and  
• the total assessed value (avtotal), as reported by the county via Core Logic, is less than or 

equal to the predicted assessed value (pav), where pav = sp2*1.02^(2010-year of sale).13

 
  

In addition, the repeat sales used in the analysis had to meet the following criteria:  

• the difference in sale dates (sddif) between the most recent (second) sale date (sd2) and 
the previous (first) sale date (sd1) is less than 20 years;  

• PV is not installed on the home as of sd1; and  
• the adjusted annual appreciation rate (adjaar) is between -0.14 and 0.3 (where adjaar = 

ln(asp2/asp1)/(sddif/365), which corresponds to the 5th and 95th percentile for the 
distribution of adjaar.14

 
   

                                                 
11 An alternative screen was tested that limited the data to homes under $1 million (leaving 90% of the data) and 
$600,000 (leaving 75%), with no significant change to the results. 
12 An alternative screen that incorporated the number of stories for the home along  with the number of square feet in 
calculating the “footprint”, and therefore allowed smaller parcels to be used, was also explored, with no significant 
change in results.   
13 This screen was intended to help ensure that homes that had significant improvements since the most recent sale, 
which would be reflected in a higher assessed value than would otherwise be the maximum allowable under 
California property tax law, were removed from the dataset.  The screen was not applied to homes that sold in 2009, 
however, because, in those cases, assessed values often had not been updated to reflect the most recent sale. 
14 This final screen was intended to remove homes that had unusually large appreciation or deprecations between 
sales, after adjusting for inflation, which could indicate that the underlying home characteristics between the two 
sales changed (e.g., an addition was added, the condition of the home dramatically worsened, etc.), or the data were 
erroneous. 
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Table 1: Variable Descriptions 

 

2.3. Data Summary 

The final full dataset includes a total of 72,319 recent sales, 1,894 of which are PV homes and 

70,425 of which are non-PV (see Table 2).  The homes with PV systems are distributed evenly 

between new (51%) and existing (49%) home types, while the non-PV homes are weighted 

toward existing homes (62%) over new (38%) (see Table 5).  The final repeat sales dataset of 

homes selling twice total 28,313 homes, of which 394 are PV and 27,919 are non-PV (see Table 

3).   

 

As indicated in Table 2, the average non-PV home in the full sample (not the repeat sales 

sample) sold for $584,740 (unadjusted) in late 2005, which corresponds to $480,862 (adjusted) 

Variable Description
acre size of the parcel (in acres)
acregt1 number of acres more than one
acrelt1 number of acres less than one
adjaar adjusted annual appreciation rate
ages2 age of home as of sd2
ages2sqr ages2 squared
asp1 inflation adjusted sp1 (in 2009 dollars)
asp2 inflation adjusted sp2 (in 2009 dollars)
avtotal total assessed value of the home
bath number of bathrooms
bgre_100 relative elevation to other homes in block group (in 100s of feet)
elev elevation of home (in feet)
lasp1 natural log of asp1
lasp2 natural log of asp2
pav predicted assessed value
pvage age of the PV system at the time of sale
sd1 first sale date
sd2 second sale date
sddif number of days separating sd1 and sd2
size size (in STC DC kW) of the PV system
sp1 first sale price (not adjusted for inflation)
sp2 second sale price (not adjusted for inflation)
sqft size of living area
sqft_1000 size of living area (in 1000s of square feet)
yrbuilt year the home was built
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in 2009 dollars.15  This “average” home is built in 1986, is 19 years old at the time of sale, has 

2,200 square feet of living space, has 2.6 bathrooms, is situated on a parcel of 0.3 acres, and is 

located at the mean elevation of the other homes in the block group.  On the other hand, the 

average PV home in the full sample sold for $660,222 in early 2007, which corresponds to 

$537,442 in 2009 dollars.  Therefore, this “average” PV home, as compared to the “average” 

non-PV home, is higher in value.  This difference might be explained, in part, by the fact that the 

average PV home is slightly younger at the time of sale (by two years), slightly bigger (by 200 

square feet), has more bathrooms (by 0.3), is located on a parcel that is slightly larger (by 0.06 

acres), and, of course, has a PV system (which is, on average, 3,100 watts and 1.5 years old).16

 

   

The repeat sale dataset, as summarized in Table 3, shows similar modest disparities between PV 

and non-PV homes, with the “average” PV homes selling for more (in 2009 $) in both the first 

and second sales.  Potentially more telling, though, non-PV homes show a slight depreciation (of 

-1.4%) between sales after adjusting for inflation, while PV homes show a modest appreciation 

(of 3.2%).  Average PV homes in the sample are found to be slightly bigger (by 100 square feet), 

occupy a slightly larger parcel (by 0.2 acres), older (by 10 years), and, of course, have a PV 

system (which is, on average, 4,030 watts and 2.5 years old).  

 

Focusing on the full dataset geographically (see Table 4 and Figure 1), we find that it spans 31 

counties with the total numbers of PV and non-PV sales ranging from as few as nine (Humboldt) 

to as many as 11,991 (Placer).  The dataset spans 835 separate (census) block groups (not shown 

in the table), though only 162 (18.7%) of these block groups contain subdivisions with at least 

one PV sale.  Within the block groups that contain subdivisions with PV sales there are 497 

subdivision-specific delineations.  As shown in Table 5, the data on home sales are fairly evenly 

split between new and existing home types, are located largely within four utility service areas, 

                                                 
15 The adjusted values, which are based on a housing price index, demonstrate the large-scale price collapse in the 
California housing market post 2005; that is, there has been significant housing price depreciation.  
16 Age of PV system at the time of sale is determined by comparing the sale date and ideally an “installation date”, 
which corresponds to the date the system was operational, but, in some cases, the only date obtained was the 
“incentive application date”, which might precede the installation date by more than one year.  For this reason the 
age of the system reported for this research is lower than the actual age. 



   

 

12 

with the largest concentration in PG&E's territory, and occurred over eleven years, with the 

largest concentration of PV sales occurring in 2007 and 2008. 

 

In summary, the full dataset shows higher sales prices for the average PV home than the average 

non-PV home, while the repeat sales dataset shows positive appreciation between sales for PV 

homes, but not for non-PV homes. Though these observations seem to indicate that a PV sales 

price premium exists, these simple comparisons do not take into account the other underlying 

differences between PV and non-PV homes (e.g., square feet), their neighborhoods, and the 

market conditions surrounding the sales.  The hedonic and difference-in-difference statistical 

models discussed in the following section are designed to do just that.   

Table 2: Summary Statistics of Full Dataset 

 

Variable n Mean Std. Dev. Min Max
acre 70425 0.3 0.8 0.0 24.8
acregt1 70425 0.1 0.7 0.0 23.8
acrelt1 70425 0.2 0.2 0.0 1.0
ages2 70425 19 23.3 -1 108
ages2sqr 70425 943 1681 0 11881
asp2 70425 480,862$    348,530$    85,007$      2,498,106$ 
avtotal 70425 497,513$    359,567$    10,601$      3,876,000$ 
bath 70425 2.6 0.9 1 9
bgre_100 70425 0.0 1.2 -18.0 19.0
elev 70425 424 598 0 5961
lasp2 70425 12.9 0.6 11.4 14.7
pvage 70425 0 0 0 0
sd2 70425 9/30/2005 793 days 1/7/1999 6/30/2009
size 70425 0 0 0 0
sp2 70425 584,740$    369,116$    69,000$      4,600,000$ 
sqft_1000 70425 2.2 0.9 0.8 9.3
yrbuilt 70425 1986 23 1901 2009

Variable n Mean Std. Dev. Min Max
acre 1894 0.4 1.0 0.0 21.6
acregt1 1894 0.1 0.9 0.0 20.6
acrelt1 1894 0.2 0.2 0.0 1.0
ages2 1894 17.3 24.5 -1 104
ages2sqr 1894 937 1849 0 11025
asp2 1894 537,442$    387,023$    85,973$      2,419,214$ 
avtotal 1894 552,052$    414,574$    23,460$      3,433,320$ 
bath 1894 2.9 1 1 7
bgre_100 1894 0.2 1.3 -10.0 17.9
elev 1894 414 584 0 5183
lasp2 1894 13.0 0.6 11.4 14.7
pvage 1894 1.5 2.0 -1.0 9.0
sd2 1894 3/28/2007 622 days 8/1/2000 6/29/2009
size 1894 3.1 1.6 0.6 10.0
sp2 1894 660,222$    435,217$    100,000$    3,300,000$ 
sqft_1000 1894 2.4 0.9 0.8 11.0
yrbuilt 1894 1989 25 1904 2009

Non-PV Homes

PV Homes
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Table 3: Summary Statistics of Repeat Sale Dataset 

 
 

Variable n Mean Std. Dev. Min Max
acre 27919 0.3 0.7 0.0 23.2
acregt1 27919 0.1 0.6 0.0 22.2
acrelt1 27919 0.2 0.2 0.0 1.0
ages2 27919 23.6 22.7 0 108
ages2sqr 27919 1122.0 1775.0 1.0 11881.0
asp1 27919 488,127$    355,212$    85,398$      2,495,044$ 
asp2 27919 481,183$    347,762$    85,007$      2,472,668$ 
avtotal 27919 498,978$    360,673$    35,804$      3,788,511$ 
bath 27919 2.5 0.8 1 9
bgre_100 27919 0.0 1.3 -17.7 19.0
elev 27919 426 588 0 5961
lasp1 27919 12.9 0.6 11.4 14.7
lasp2 27919 12.9 0.6 11.4 14.7
pvage 27919 0 0 0 0
sd1 27919 5/5/2001 1780 days 11/1/1984 12/11/2008
sd2 27919 5/14/2006 786 days 3/11/1999 6/30/2009
sddif 27919 1835 1509 181 7288
size 27919 0 0 0 0
sp1 27919 444,431$    287,901$    26,500$      2,649,000$ 
sp2 27919 577,843$    371,157$    69,000$      3,500,000$ 
sqft_1000 27919 2.1 0.8 0.8 7.7
yrbuilt 27919 1982 23 1901 2008

Variable n Mean Std. Dev. Min Max
acre 394 0.5 1.4 0.0 21.6
acregt1 394 0.2 1.3 0.0 20.6
acrelt1 394 0.2 0.2 0.0 1.0
ages2 394 34.6 25.6 1 104
ages2sqr 394 1918.0 2336.0 4.0 11025.0
asp1 394 645,873$    417,639$    110,106$    2,339,804$ 
asp2 394 666,416$    438,544$    91,446$      2,416,498$ 
avtotal 394 682,459$    478,768$    51,737$      3,433,320$ 
bath 394 2.6 0.9 1 7
bgre_100 394 0.1 1.6 -5.5 17.9
elev 394 479 581 3 3687
lasp1 394 13.2 0.6 11.6 14.7
lasp2 394 13.2 0.6 11.4 14.7
pvage 394 2.5 1.6 -1.0 9.0
sd1 394 11/22/1999 1792 days 11/30/1984 1/7/2008
sd2 394 1/9/2007 672 days 8/1/2000 6/29/2009
sddif 394 2605 1686 387 7280
size 394 4.03 1.94 0.89 10
sp1 394 492,368$    351,817$    81,500$      2,500,000$ 
sp2 394 800,359$    489,032$    121,000$    3,300,000$ 
sqft_1000 394 2.2 0.8 0.8 5.3
yrbuilt 394 1972 26 1904 2008

Non-PV Homes

PV Homes
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Table 4: Frequency Summary by California County 

 

CA County Non-PV PV Total
Alameda 4,826 153 4,979
Butte 457 12 469
Contra Costa 5,882 138 6,020
El Dorado 938 85 1,023
Humboldt 7 2 9
Kern 2,498 53 2,551
Kings 134 5 139
Los Angeles 3,368 82 3,450
Marin 1,911 61 1,972
Merced 48 2 50
Monterey 10 2 12
Napa 36 1 37
Orange 1,581 44 1,625
Placer 11,832 159 11,991
Riverside 4,262 87 4,349
Sacramento 10,928 483 11,411
San Bernardino 2,138 50 2,188
San Diego 1,083 30 1,113
San Francisco 407 16 423
San Joaquin 1,807 20 1,827
San Luis Obispo 232 1 233
San Mateo 2,647 92 2,739
Santa Barbara 224 7 231
Santa Clara 6,127 157 6,284
Santa Cruz 90 1 91
Solano 2,413 39 2,452
Sonoma 1,246 32 1,278
Tulare 774 14 788
Ventura 1,643 42 1,685
Yolo 16 1 17
Yuba 860 23 883

Total 70,425 1,894 72,319
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Figure 1: Map of Frequencies of PV Homes by California County 
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Table 5: Frequency Summary by Home Type, Utility and Sale Year 

 
 

  

Home Type * Non-PV PV Total 
New Home 26,938 935 27,873
Existing Home 43,487 897 44,384

Utility ** Non-PV PV Total 
Pacific Gas & Electric 
(PG&E)

36,137 1,019 37,156

Southern California 
Edison (SCE)

14,502 337 14,839

San Diego Gas & 
Electric (SDG&E)

8,191 35 8,226

Sacramento Municipal 
Utility District (SMUD)

11,393 498 11,891

Other 202 5 207

Sale Year Non-PV PV Total 
1999 110 0 110
2000 379 1 380
2001 1,335 10 1,345
2002 6,278 37 6,315
2003 8,783 63 8,846
2004 10,888 153 11,041
2005 10,678 168 10,846
2006 9,072 173 9,245
2007 8,794 472 9,266
2008 9,490 642 10,132
2009 4,618 175 4,793

* A portion of the PV homes could not be classified as either new or 
existing and therefore are not included in these totals
** Non-PV utility frequencies were estimated by mapping block groups 
to utility service areas, and then attributing the utility to all homes 
that were located in the block group
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3. Methods and Statistical Models 

3.1.  Methodological Overview 

The data, as outlined above, not only show increased sales values and appreciation for PV homes 

(in 2009 $) over non-PV homes, but also important differences between PV and non-PV homes 

as regards other home, site, neighborhood and market characteristics that could, potentially, be 

driving these differences in value and appreciation.  A total of 21 empirical model specifications, 

with a high reliance on the hedonic pricing model, are used in this paper to disentangle these 

potentially competing influences in order to determine whether and to what degree PV homes 

sell for a premium.   

 

The basic theory behind the hedonic pricing model starts with the concept that a house can be 

thought of as a bundle of characteristics.  When a price is agreed upon between a buyer and 

seller there is an implicit understanding that those characteristics have value.  When data from a 

number of sales transactions are available, the average individual marginal contribution to the 

sales price of each characteristic can be estimated with a hedonic regression model (Rosen, 1974; 

Freeman, 1979).  This relationship takes the basic form: 

 

Sales price = f (home and site, neighborhood, and market characteristics)   

 

“Home and site characteristics” might include, but are not limited to, the number of square feet 

of living area, the size of the parcel of land, and the presence of a PV system.  “Neighborhood” 

characteristics might include such variables as the crime rate, the quality of the local school 

district, and the distance to the central business district.  Finally, “market characteristics” might 

include, but are not limited to, temporal effects such as housing market inflation/deflation.  

 

A variant of the hedonic model is a repeat sales model, which holds constant many of the 

characteristics discussed above, and compares inflation adjusted selling prices of homes that 

have sold twice, both before a condition exists (e.g., before a PV system is installed on the home) 

and after the condition exists (e.g., after a PV system is installed on the home), and across PV 
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and non-PV homes.  This repeat sales model, in the form used in this paper, is referred to as a 

difference-in-difference (DD) model, and is discussed in more detail later. 

 

To test for the impact of PV systems on residential selling prices, a series of “base” hedonic 

models, a “base” difference-in-difference model, a series of robustness models, and two “other” 

models are estimated for this research.17

3.2. Variables Used in Models 

  As discussed later, these models are used to test for 

fixed (whether the home has a PV system) and continuous (the size of the PV system) effects 

using the full dataset of PV homes.  They are also used to test for any differences that exist 

between new and existing PV homes and between homes with PV systems of different ages, and 

to test for the possibility of non-linear returns to scale based on the size of the PV system or the 

home itself.  Before describing these models in more detail, however, a summary of the variables 

to be included in the models is provided.   

In each base model, be it hedonic or difference-in-difference, four similar sets of parameters are 

estimated, namely coefficients on the variables of interest and coefficients for three sets of 

controls that include home and site characteristics, neighborhood (census block group) fixed 

effects, and temporal (year and quarter) fixed effects.  The variables of interest are the focus of 

the research, and include such variables as whether the home has a PV system installed or not, 

the size of the PV system, and interactions between these two variables and others, such as the 

size of the home or the age of the PV system.  To accurately measure these variables of interest 

(and their interactions) other potentially confounding variables need to be controlled for in the 

models.  The base models differ in their specification and testing of the variables of interest, as 

discussed later, but use the same three sets of controls.   

 

The first of these sets of control variables accounts for differences across the dataset in home and 

site-specific characteristics, including the age of the home (linear and squared), the total square 

feet of living area, and the relative elevation of the home (in feet) to other homes in the block 

group; the latter variable serves as a proxy for “scenic vista,” a value-influencing characteristic 
                                                 
17 As will be discussed later, each of the “base” models is coupled with a set of two or three robustness models.  The 
“other” models are presented without “robustness” models. 
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(see e.g., Hoen et al., 2009).18

 

  Additionally, the size of the property in acres was entered into the 

model in spline form to account for different valuations of less than one acre and greater than 

one acre. 

The second set of controls, the geographic fixed effects variables, includes dummy variables that 

control for aggregated “neighborhood” influences, which, in our case, are census block groups.19  

A census block group generally contains between 200 and 1,000 households,20 and is delineated 

to never cross boundaries of states, counties, or census tracts, and therefore, in our analysis, 

serves as a proxy for “neighborhood.”  To be usable, each block group had to contain at least one 

PV home and one non-PV home.  The estimated coefficients for this group of variables capture 

the combined effects of school districts, tax rates, crime, distance to central business district and 

other block group specific characteristics.  This approach greatly simplifies the estimation of the 

model relative to determining these individual characteristics for each home, but interpreting the 

resulting coefficients can be difficult because of the myriad of influences captured by the 

variables.  Because block groups are fairly small geographically, spatial autocorrelation21

 

 is also, 

to some degree, dealt with through the inclusion of these variables. 

Finally, the third set of controls, the temporal fixed effect variables, includes dummy variables 

for each quarter of the study period to control for any inaccuracies in the housing inflation 

adjustment that was used.  A housing inflation index is used to adjust the sales prices throughout 

the study period to 2009 prices at a zip code level across as many as three price tiers.  Although 

                                                 
18 Other home and site characteristics were also tested, such as the condition of the home, the number of bathrooms, 
the number of fireplaces, and if the home had a garage and/or a pool. Because these home and site characteristics 
were not available for all home transactions (and thus reduced the sample of homes available), did not add 
substantial explanatory power to the model, and did not affect the results substantively, they were not included in the 
model results presented in this paper.   
19 For a portion of the dataset, a common subdivision name was identified, which, arguably, serves as a better proxy 
for neighborhood than block group.  Unfortunately, not all homes fell within a subdivision.  Nonetheless, a separate 
combined subdivision-block group fixed effect was tested and will be discussed later. 
20 Census block groups generally contain between 600 and 3,000 people, and the median household size in 
California is roughly 3. 
21 Spatial Autocorrelation - a correlation between neighbors' selling prices - can produce unstable coefficient 
estimates, yielding unreliable significance tests in hedonic models if not accounted for.  One reason for this spatial 
autocorrelation is omitted variables, such as neighborhood characteristics (e.g., distance to the central business 
district), which affect all properties within the same area similarly.  Having micro-spatial controls, such as block 
groups or subdivisions, helps control for such autocorrelation. 
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this adjustment is expected to greatly improve the model - relative to using just a temporal fixed 

effect with an unadjusted price - it is also assumed that because of the volatility of the housing 

market, the index may not capture price changes perfectly and therefore the model is enhanced 

with the additional inclusion of these quarterly controls.22

3.3.  Fixed and Continuous Effect Hedonic Models 

 

The analysis begins with the most basic model comparing prices of all of the PV homes in the 

sample (whether new or existing) to non-PV homes across the full dataset.  As is common in the 

literature (Malpezzi, 2003; Sirmans et al., 2005b; Simons and Saginor, 2006), a semi-log 

functional form of the hedonic pricing model is used where the dependent variable, the (natural 

log of) sales price (P), is measured in zip code-specific inflation-adjusted (2009) dollars.  To 

determine if an average-sized PV system has an effect on the sale price of PV homes (i.e., a fixed 

effect) we estimate the following base fixed effect model: 

( ) ( ) ( ) ( )itk 1 t 2 k 3 i 4 i itk
a

ln(P ) T N X PVα β β β β ε= + + + + +∑  (1) 

where 

Pitk represents the inflation adjusted sale price for transaction i, in quarter t, in block group k,  

α is the constant or intercept across the full sample, 

Tt is the quarter in which transaction i occurred, 

Nk is the census block group in which transaction i occurred, 

Xi is a vector of a home characteristics for transaction i (e.g., acres, square feet, age, etc.), 

PVi is a fixed effect variable indicating a PV system is installed on the home in transaction i,  

β1 is a parameter estimate for the quarter in which transaction i occurred,  

β2 is a parameter estimate for the census block group in which transaction i occurred,  

β3 is a vector of parameter estimates for home characteristics a,  

β4 is a parameter estimate for the PV fixed effects variable, and 

εitk is a random disturbance term for transaction i,in quarter t, in block group k. 

 

                                                 
22 A number of models were tested both with and without these temporal controls and with a variety of different 
temporal controls (e.g., monthly) and temporal/spatial controls (e.g., quarter and tract interactions).  The quarterly 
dummy variables were the most parsimonious, and none of the other approaches impacted the results substantively.   
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The parameter estimate of primary interest in this model is β4, which represents the marginal 

percentage change in sale price with the addition of an average sized PV system.  If differences 

in selling prices exist between PV and non-PV homes, we would expect the coefficient to be 

positive and statistically significant. 

 

An alternative to equation (1) is to interact the PV fixed effect variable (PVi) with the size (in 

kW) of the PV system as installed on the home at the time of sale (SIZEi), thereby producing an 

estimate for the differences in sales prices as a function of size of the PV system.  This base 

continuous effect model takes the form: 

( ) ( ) ( ) ( )itk 1 t 2 k 3 i 4 i i itk
a

ln(P ) T N X PV SIZEα β β β β ε= + + + + ⋅ +∑  (2) 

where  

SIZEi is a continuous variable for the size (in kW) of the PV system installed on the home 

prior to transaction i,  

β4 is a parameter estimate for the percentage change in sale price for each additional kW 

added to a PV system, and all other terms are as were defined for equation (1).   

 

If differences in selling prices exist between PV and non-PV homes, we would expect the 

coefficient to be positive and statistically significant, indicating that for each additional kilowatt 

added to the PV system the sale price increases by β4 (in % terms).  

 

This continuous effect specification may be preferable to the PV fixed effect model because one 

would expect that the impact of PV systems on residential selling prices would be based, at least 

partially, on the size of the system, as size is related to energy bill savings.23

                                                 
23 Ideally, the energy bill savings associated with individual PV systems could be entered into the model directly, 
but these data were not available.  Moreover, estimating the savings accurately on a system-by-system basis was not 
possible because of the myriad of different rate structures in California, the idiosyncratic nature of energy use at the 
household level, and variations in PV system designs and orientations. 

  Moreover, this 

specification allows for a direct estimate of any PV home sales premium in dollars per watt 

($/watt), which is the form in which other estimates – namely average net installed costs – are 

reported.  With the previous fixed effects specification, a $/watt estimate can still be derived, but 
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not directly.  Therefore, where possible in this paper, greater emphasis is placed on the 

continuous effect specification than on the fixed effect estimation.     

 

As mentioned earlier, for each base model we explore a number of different robustness models to 

better understand if and to what degree the results are unbiased.  In the present research, two 

areas of bias are of particular concern: omitted variable bias and sample selection bias.   

 

The omitted variables that are of specific concern are any that might be correlated with the 

presence of PV, and that might affect sales prices.  An example is energy efficiency (EE) 

improvements, which might be installed contemporaneously with a PV energy system.  If many 

homes with PV have EE improvements, whereas the comparable non-PV homes do not, then 

estimates for the effects of PV on selling prices might be inclusive of EE effects and, therefore, 

may be inappropriately high.  Any other value-influencing home improvements (e.g., kitchen 

remodels, new roofs, etc.), if correlated with the presence of PV, could similarly bias the results 

if not carefully addressed. 

 

With respect to selection bias, the concern is that the distribution of homes that have installed PV 

may be different from the broad sample of homes on which PV is not installed.  If both sets of 

homes are assumed to have similar distributions but are, in point of fact, dissimilar due to 

selection, then the estimates for the effects of PV on the selling price could be inclusive of these 

underlying differences but attributed to the existence of PV, thereby also potentially biasing the 

results. 

 

To mitigate the issue of omitted variable bias, one robustness model uses the same data sample 

as the base model but a different model specification.  Specifically, a combined subdivision-

block group fixed effect variable can be substituted, where available, in place of the block group 

fixed effect variable as an alternative proxy for “neighborhood.”  Potentially omitted variables 

are likely to be more similar between PV and non-PV homes at the subdivision level than at the 
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block group level, and therefore this model may more-effectively control for such omitted 

variables.24

 

  

To mitigate the issue of selection bias, one robustness model uses the same model specification 

as the base model but with an alternative (subset) of the data sample.  Specifically, instead of 

using the full dataset with equations (1) and (2), a “coarsened exact matched” dataset is used 

(King et al., 2010).25

 

  This matching procedure results in a reduced sample of homes to analyze, 

but the PV and non-PV homes that remain in the matched sample are statistically equal on their 

covariates after the matching process (e.g., PV homes within a block group are matched with 

non-PV homes such that both groups are similar in the number of bathrooms, date of sale, etc.).  

As a result, biases related to selection are minimized.   

Finally, specific to equation (2), a robustness model to mitigate both omitted variable and 

selection bias is constructed in which the sample is restricted to include only

                                                 
24 Subdivisions are often geographically smaller than block groups, and therefore more accurately control for 
geographical influences such as distance to central business district.  Moreover, homes in the same subdivision are 
often built at similar times using similar materials and therefore serve as a control for a variety of house specific 
characteristics that are not controlled for elsewhere in the model.  For example, all homes in a subdivision will often 
be built using the same building code with similar appliances being installed, both of which might control for the 
underlying energy efficiency (EE) characteristics of the home.  For homes not situated in a subdivision, the block 
group delineation was used, and therefore these fixed effects are referred to as “combined subdivision-block group” 
delineations.  

 PV homes (in place 

of the full sample of PV and non-PV homes).  Because this model does not include non-PV 

“comparable” homes, sales prices of PV homes are “compared” against each other based on the 

size of the PV systems, while controlling for the differences in the home via the controlling 

characteristics (e.g., square feet of living space).  PV system size effects are therefore estimated 

without the use of non-PV homes, providing an important comparison to the base models, while 

also directly addressing any concerns about the inherent differences between PV and non-PV 

homes (e.g., whether energy efficient upgrades were made contemporaneously with the PV) and 

therefore omitted variable and sample selection bias.  

25 The procedure used, as described in the referenced paper, is coarsened exact matching (cem) in Stata, available at: 
http://ideas.repec.org/c/boc/bocode/s457127.html.  The matching procedure creates statistically matched sets of PV 
and non-PV homes in each block group, based on a set of covariates, which, for this research, include the number of 
square feet, acres, and baths, as well as the age of the home, its elevation, and the date at which it sold.  Because this 
matching process excludes non-PV homes that are without a statistically similar PV match (and vice versa), a large 
percentage of homes (approximately 80% non-PV and 20% PV) are not included in the resulting dataset. 

http://ideas.repec.org/c/boc/bocode/s457127.html�
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3.4.  New and Existing Home Models 

Although equations (1) and (2) are used to estimate whether a PV system, on average, effects 

selling prices across the entire data sample, they do not allow one to distinguish any such effects 

as a function of house type, specifically whether the home is new or existing.  As discussed 

earlier, new homes with PV might have different premiums than existing homes.  To try to tease 

out these possible differences, two base hedonic models are estimated using equation (2), one 

with only new homes and the other with only existing homes.26

 

  Comparing the coefficient of the 

variable of interest (β4) between these two models allows for an assessment of the relative size of 

the impact of PV systems across the two home types. 

Additionally, two sets of robustness models that were discussed earlier are also applied to the 

new and existing home models, one using the coarsened exact matched datasets and the other 

using the combined subdivision-block group delineations.  These models test the robustness of 

the results for selection and omitted variable bias, respectively.  Although it is discussed 

separately as a base model in the following subsection, the difference-in-difference model, using 

repeat sales of existing homes, also doubly serves as a robustness test to the existing homes base 

model.   

3.4.1. Difference-in-Difference Models 

One classic alternative to estimating a hedonic model, as briefly discussed earlier, is to estimate a 

difference-in-difference (DD) model (Wooldridge, 2009).  This model (see Table 1) uses a set of 

homes that have sold twice, both with and without PV, and provides estimates of the effect of 

adding PV to a subset of those homes as of the second sale (“DD” as noted in Table 1), while 

simultaneously accounting for both the inherent differences in the PV and non-PV groups and

                                                 
26 New and existing homes were determined in an iterative process.  For PV homes, the type of home was often 
specified by the data provider.  It was also discovered that virtually all of the new PV homes (as specified by the PV 
data providers) had ages, at the time of sale, between negative one and two years, inclusive, whereas the existing PV 
homes (as specified by the PV data providers) had ages greater than two years in virtually every case.  The small 
percentage (3%) of PV homes that did not fit these criteria were excluded from the models.  For non-PV homes, no 
data specifying the home type were available, therefore, groupings were created following the age at sale criteria 
used for PV homes (e.g., ages between negative one and two years apply to new non-PV homes).   

 

the trend in housing prices between the first and second sales of non-PV homes.  Repeat sales 

models of this type are particularly effective in controlling for selection and certain types of 
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omitted variable bias.  In the former case, any underlying difference in home prices between PV 

and non-PV homes prior to the addition of PV is controlled for.  In the latter case, PV and non-

PV homes are assumed to have undergone mostly similar changes (e.g., home improvements) 

between sales.  Any changes to the home that are coincident with the installation of a PV system 

(or the PV system household), on the other hand, are not directly controlled for in this model, 

though there is reason to believe that any such remaining influences are not imposing substantial 

bias in the present study.27

  

 

The set of PV homes that are used in the DD model are, by default, existing homes (i.e., the 

home was not new when the PV system was installed).  Estimates derived from this model, 

therefore, apply to - while also serving as a robustness tests for - the existing home models as 

specified above.   

Table 6: Difference-in-Difference Description 

 
 

The base DD model is estimated as follows:   

( ) ( ) ( ) ( )itk 1 t 2 k 3 i 4 i 5 i 6 i itk
a

ln(P ) T N X PVH (SALE2 ) (PVS )α β β β β β β ε= + + + + + + +∑  (3) 

where 

PVHi is a fixed effect variable indicating if a PV system is or will be

                                                 
27 Support for this assumption comes from two sources.  Although surveys (e.g., CPUC, 2010) indicate that PV 
homeowners install energy efficient “measures” with greater frequency than non-PV homeowners, the differences 
are relatively small and largely focus on lighting and appliances.  The former is not expected to substantially impact 
sales prices, while the latter could.  The surveys also indicate that PV homeowners tend to install other larger EE 
measures, such as building shell, water heating and cooling improvements, with greater frequency than non-PV 
homes.  Additionally, it might also be hypothesized that PV homeowners may be more-likely to have newer roofs 
(perhaps installed at the time of PV installation). Dastrop et al. (2010), however, investigated whether home 
improvements that might require a permit affect PV home sales premium estimates, and found they did not.  It 
should be noted that the PV Only model, discussed previously, directly addresses the concern of omitted variable 
bias for this analysis. 

 installed on the home in 

transaction i,  

Pre PV Post PV Difference
PV Homes PV1 PV2 ΔPV =  PV2 - PV1

Non-PV Homes NPV1 NPV2 ΔNPV =  NPV2 - NPV1

DD = ΔPV - ΔNPV
1 and 2 denote time periods
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SALE2i is a fixed effect variable indicating if transaction i is the second of the two sales,  

PVSi is a fixed effect variable (an interaction between PVHi and SALE2i) indicating if 

transaction i is both the second of the two sales and contained a PV system at the time of 

sale,  

α is the constant or intercept across the full sample, 

β4 is a parameter estimate for homes that have or will have PV installed (i.e., from Table 6 

“PV1 – NPV1”),  

β5 is a parameter estimate if transaction i occurred as of the second sale (i.e., “ΔNPV”),  

β6 is a parameter estimate if transaction i occurred as of the second sale and the home 

contained PV (i.e., “ΔPV – ΔNPV” or “DD”), and all other terms are as were defined for 

equation (1).   

 

The coefficient of interest is β6, which represents the percentage change in sale price, as 

expressed in 2009 dollars, when PV is added to the home, after accounting for the differences 

between PV and non-PV homes (β4) and the differences between the initial sale and the second 

sale of non-PV homes (β5).  If differences in selling prices exist between PV and non-PV homes, 

we would expect the coefficient to be positive and statistically significant.28

 

 

To further attempt to mitigate the potential for omitted variable bias, two robustness models are 

estimated for the base DD model: one with the combined subdivision-block group delineations 

and a second with a limitation applied on the number of days between the first and second sale.29

                                                 
28 This is the classic model form derived from a quasi-experiment, where the installation of PV is the treatment.  An 
alternative specification would look at the incremental effect of PV system size holding the starting differences 
between PV and non-PV homes as well as the time-trend in non-PV homes constant.  This model form was not 
evaluated in the current analysis effort, but could be considered grounds for future research in this area.    

  

The first robustness model is similar to the one discussed earlier.  The second robustness model 

accounts for the fact that the home characteristics used (in all models) reflect the most recent 

home assessment, and therefore do not necessarily reflect the characteristics at the time of the 

sale.  Especially worrisome are the first sales in the DD model, which can be as much as 20 years 

before the second sale.  To test if our results are biased because of these older sales - and the 

29 Ideally a matched dataset could be utilized, for reasons described earlier, but because the matching procedure 
severely limited the size of the dataset, the resulting dataset was too small to be useful.   
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large periods between sales - an additional data screen is applied in which the difference between 

the two sale dates is limited to five years.30

3.5. Age of the PV System for Existing Homes Hedonic Models 

 

The age of the PV system at the time of home sale could affect the sales price premium for 

existing homes (PV systems on new homes are, by definition, also new).  This might occur 

because older PV systems have a shorter expected remaining life and may become somewhat 

less efficient with age (and therefore deliver a lower net present value of bill savings), but also 

because older PV systems will have generated more energy bill savings for the home seller and 

the seller may therefore more-willingly accept a lower price.  Together, these factors suggest that 

premiums for older PV systems on existing homes would be expected to be lower than for newer 

systems.  In order to test this directly the following base model is estimated:     

( ) ( ) ( ) ( )1 2 3 4ln( )itk t k i i i i itk
a

P T N X PV SIZE AGEα β β β β ε= + + + + ⋅ ⋅ +∑  (4) 

where  

AGEi is a categorical variable for three groups of PV system age as of the time of sale of the 

home: 1) less than or equal to one year old; 2) between 2 and 4 years old; and, 3) five or 

more years old. 

 

Therefore, β4 is a vector of parameter estimates for the percentage change in sales price for each 

additional kW added to a PV system for each of the three PV system age groups, and all other 

terms are as are defined for equation (2).  The assumption is that the coefficients for β4 will be 

decreasing - indicating they are valued less - as the age of the PV systems decrease.  The sample 

used for this model is the same as for the existing home model defined previously. 

 

Additionally, two sets of robustness models are explored, one using the coarsened exact matched 

dataset and the other using the combined subdivision-block group delineations, to test the 

robustness of the results for selection and omitted variable bias, respectively.   

                                                 
30 As was discussed earlier, a screen for this eventuality (using adjaar) is incorporated in our data cleaning.  This 
test therefore serves as an additional check of robustness of the results. 
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3.6. Returns to Scale Hedonic Models 

As discussed earlier, it is not unreasonable to expect that any increases in the selling prices of PV 

homes may be non-linear with PV system size.  In equation (2), it was assumed that estimated 

price differences were based on a continuous linear relationship with the size of the system.  To 

explore the possibility of a non-linear relationship among the full sample of homes in the dataset, 

the following model is estimated:31

( ) ( ) ( ) ( )1 2 3 4 5ln( ) ( )itk t k i i i i i i itk
a

P T N X PV SIZE PV SIZE SIZEα β β β β β ε= + + + + ⋅ + ⋅ ⋅ +∑

  

 (5) 

where  

β5 is a parameter estimate for the percentage change in sales price for each additional kW 

added to a PV system squared, and all other terms are as are defined for equation (2).   

 

A negative statistically significant coefficient (β5) would indicate decreasing returns to scale for 

larger PV systems, while a positive coefficient would indicate the opposite. 

 

Somewhat analogously, as was discussed previously, premiums for PV systems may be related 

to the size of the home.32

( ) ( ) ( ) ( )1 2 3 4 5

6

ln( ) ( )

( )

itk t k i i i i
a

i i i itk

P T N X SQFT PV SIZE

PV SIZE SQFT

α β β β β β

β ε

= + + + + + ⋅ +

⋅ ⋅ +

∑

  To test this directly using the full dataset, the following model is 

estimated: 

 (6) 

where  

SQFTi is a continuous variable for the number of square feet for the home in transaction i,33

β4 is a parameter estimate for the percentage change in sale price for each additional 1000 

square feet added to the home, 

 

                                                 
31 Neither this nor the following model is coupled with robustness models in this paper. 
32 PV system size is also somewhat correlated with house size as a result of the tendency for increasing energy use 
and larger roof areas on larger homes.  If this correlation was particularly strong then coefficient estimates could be 
imprecise. The correlation between PV house size and PV system size in the full sample of our data, however, is 
rather weak, at only 0.14.  Clearly, many factors other than house size impact the sizing of PV systems.  
33 In all of the previous models the number of square feet is contained in the vector of characteristics represented by 
Xi, but in this model it is separated out for clarity. 
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β5 is a parameter estimate for the percentage change in sale price for each additional kW 

added to a PV system,  

β6 is a parameter estimate for the percentage change in sale price for each additional 1000 

square feet added to PV homes, assuming the size of the PV system does not change, and 

all other terms are as were defined for equation (2).   

 

A negative statistically significant coefficient for β6 would indicate decreasing returns to scale 

for PV systems as homes increase in size.  Alternatively, a positive and statistically significant 

coefficient would indicate increasing returns to scale for PV systems installed on larger homes. 
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3.7. Model Summary 

To summarize, the entire set of 21 estimated models discussed herein is shown in Table 7.  The 

following definitions of terms, all of which were discussed earlier, are relevant for interpreting 

the models listed in the table, and therefore are briefly reviewed again.   All “base” models are 

coupled with a set of “robustness” models (as noted by a capital “R” in the model number).  The 

“Other” (returns to scale) models are presented alone.  Models 1 - 4 and 6 - 8 use the hedonic 

pricing model, whereas Model 5 is based on the difference-in-difference (DD) model.  “Fixed” 

(versus “continuous”) means that the PV variable is entered into the regression as a zero-one 

dichotomous variable (for Models 1-1Rb and 5-5Rb), whereas “continuous” (for all other 

models) means that the model estimates the impact of an increase in PV system size on 

residential selling prices.  Base Models 1, 2, 7 and 8 use the full dataset, while Models 4 and 6 

are restricted to existing homes, Model 3 to new homes, and Model 5 to the repeat sales dataset.  

The “matched” models use the smaller dataset of coarsened exact matched (PV and non-PV) 

homes.  “Base” models estimate neighborhood fixed effects at the census block group level, 

whereas the “subdivision” models estimate neighborhood fixed effects at the combined 

subdivision-block group level. 

Table 7: Summary of Models 

  

Model 
Number Model Name

Base 
Model

Robustness 
Model

Other 
Models Dataset

Neighborhood               
Fixed Effects

1 Fixed - Base X Full Block Group
1Ra Fixed - Matched X Full Matched Block Group
1Rb Fixed - Subdivision X Full Subdivision/Block Group

2 Continuous - Base X Full Block Group
2Ra Continuous - Matched X Full Matched Block Group
2Rb Continuous - Subdivision X Full Subdivision/Block Group
2Rc Continuous - PV Only X PV Only Block Group

3 New Homes - Base X New Block Group
3Ra New - Matched X New - Matched Block Group
3Rb New - Subdivision X New Subdivision/Block Group

4 Existing Homes - Base X Existing Block Group
4Ra Existing - Matched X Existing - Matched Block Group
4Rb Existing - Subdivision X Existing Subdivision/Block Group

5 Difference-in-Difference (DD) - Base X Repeat Sales Block Group
5Ra Difference-in-Difference (DD) - Subdivision X Repeat Sales Subdivision/Block Group
5Rb Difference-in-Difference (DD) - Sddif < 5 Years X Repeat Sales w/ sddif < 5 Block Group

6 Age of System - Base X Existing Block Group
6Ra Age of System - Matched X Existing - Matched Block Group
6Rb Age of System - Subdivision X Existing Subdivision/Block Group

7 Returns to Scale - Size X Full Block Group
8 Returns to Scale - Square Feet X Full Block Group
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4. Estimation Results 

Estimation results for all 21 models (as defined in Table 7) are presented in Tables 8-11, with the 

salient results on the impacts of PV on homes sales prices summarized in Figures 2-4.34, 35  The 

adjusted R2 for all models is high, ranging from 0.93 to 0.95, which is notable because the 

dataset spanned a period of unusual volatility in the housing market.   The model performance 

reflects, in part, the ability of the inflation index and temporal fixed effects variables to 

adequately control for market conditions.36

 

   

Moreover, the sign and magnitude of the home and site control variables are consistent with a 

priori expectations, are largely stable across all models, and are statistically significant at the 1% 

level in most models.37

                                                 
34 For simplicity, this paper does not present the results for the quarter and block group (nor combined subdivision-
block group) fixed effects, which consist of more than 900 coefficients.  These are available upon request from the 
authors. 

  Each additional 1000 square feet of living area added to a home is 

estimated to add between 19% and 26% to its value, while the first acre adds approximately 40% 

to its value with each additional acre adding approximately 1.5%.  For each year a home ages, it 

is estimated that approximately 0.2% of its value is lost, yet at 60 years, age becomes an asset 

with homes older than that estimated to garner premiums for each additional year in age.  Finally, 

for each additional 100 feet above the median elevation of the other homes in the block group, a 

home’s value is estimated to increase by approximately 0.3%.  These results can be benchmarked 

to other research. Specifically, Sirmans et al. (2005a; 2005b) conducted a meta-analysis of 64 

hedonic pricing studies carried out in multiple locations in the U.S. during multiple time periods, 

and investigated similar characteristics as included in the models presented here, except for 

relative elevation.  As a group, each of the home and site characteristic estimates in the present 

35 All models were estimated with Stata SE Version 11.1 using the “areg” procedure with White’s correction for 
standard errors (White, 1980).  It should also be noted that all Durbin-Watson (Durbin and Watson, 1951) test 
statistics were within the acceptable range (Gujarati, 2003), there was little multicollinearity associated with the 
variables of interest, and all results were robust to the removal of any cases with a Cook’s Distance greater than 4/n 
(Cook, 1977) and/or standardized residuals greater than four. 
36 As mentioned in footnote 22, a variety of approaches were tested to control for market conditions, such as spatial 
temporal fixed effects (e.g., census block / year quarter) both with and without adjusted sale prices.  The models 
presented here were the most parsimonious.  As importantly, the results were robust to the various specifications, 
which, in turn, provides additional confidence that the effects presented are not biased by the fluctuating market 
conditions that have impacted the housing market for some years. 
37 In some models, where there is little variation between the cases on the covariate (e.g., acres), the results are non-
significant at the 10% level. 
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study differ from the mean Sirmans et al. estimates by no more than one half of one standard 

deviation.   

 

In summary, these results suggest that the hedonic and repeat sales models estimated here are 

effectively capturing many of the drivers to home sales prices in California, and therefore 

increasing confidence that those same models can be used to accurately capture any PV effects 

that may exist. 

4.1.  Fixed and Continuous Effect Hedonic Model Results 

The results from the base hedonic models (equations 1 and 2) are shown in Table 8 as Models 1 

and 2, respectively. These models estimate the differences across the full dataset between PV and 

non-PV homes, with Model 1 estimating this difference as a fixed effect, and Model 2 estimating 

the difference as a continuous effect for each additional kilowatt (kW) of PV added.  Also shown 

in the table are the results from the robustness tests using the coarsened exact matching 

procedure and the combined subdivision-block group delineations, as shown as Models 1Ra and 

1Rb for PV fixed effect models and Models 2Ra and 2Rb for continuous effect variables.  

Finally, the model that derives marginal impact estimates from only

 

 PV homes is shown in the 

table as Model 2Rc.   

Across all seven of these models (Models 1 – 2Rc), regardless of the specification, the variables 

of interest of PV and SIZE are positive and significant at the 10% level, with six out of seven 

estimates being significant at the 1% level.  Where a PV fixed effect is estimated, the coefficient 

can be interpreted as the percentage increase in the sales price of a PV home over the mean non-

PV home sales price in 2009 dollars based on an average sized PV system.  By dividing the 

monetary value of this increase by the number of watts for the average sized system, this 

premium can be converted to 2009 dollars per watt ($/watt).  For example, for base Model 1, 

multiplying the mean non-PV house value of $480,862 by 0.036 and dividing by 3120 watts, 

yields a premium of $5.5/watt (see bottom of Table 8).  Where SIZE, a continuous PV effect, is 

used, the coefficients reflect the percentage increase in selling prices in 2009 dollars for each 

additional kW added to the PV system.  Therefore, to convert the SIZE coefficient to $/watt, the 

mean house value for non-PV homes is multiplied by the coefficient and divided by 1000.  For 
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example, for base Model 2, $480,862 is multiplied by 0.012 and divided by 1000, resulting in an 

estimate of $5.8/watt.38

 

   

As summarized in Figure 2, these base model results for the impact of PV on residential selling 

prices are consistent with those estimated after controlling for subdivision fixed effects 

($5.4/watt and $5.6/watt for fixed and continuous effects, respectively), differing by no more 

than $0.2/watt.  On the other hand, the estimated PV premiums derived from the coarsened exact 

matched dataset are noticeably smaller, decreasing by 20 to 30%, and ranging from $3.9/watt to 

$4.8/watt for fixed and continuous effects, respectively.  Alternatively, the PV only Model 2Rc 

estimates a higher $/watt continuous effect of $6.4/watt, although that estimate is statistically 

significant at a lower 10% level.  This estimate, because it is derived from PV homes only, 

corroborates that any changes to the home that are coincident with the installation of the PV (e.g., 

energy efficient upgrades) are not influencing results dramatically. 

Figure 2: Fixed and Continuous Effect Base Model Results with Robustness Tests 

 
 
                                                 
38 To be exact, the conversion is a bit more complicated.  For example, for the fixed effect model the conversion is 
actually (EXP(LN(480,862)+0.036)-480,862)/3.12/1000, but the differences are de minimis, and therefore are not 
used herein. 
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Though results among these seven models differ to some degree, the results are consistent in 

finding a premium for PV homes over non-PV homes in California, which varies from $3.9 to 

$6.4/watt on average, depending on the model specification.  These sale price premiums are very 

much in line with, if not slightly above, the historical mean net installed costs (i.e., the average 

installed cost of a system, after deducting available state and federal incentives) of residential PV 

systems in California of approximately $5/watt from 2001 through 2009 (Barbose et al., 2010), 

which, as discussed earlier, may be reasonable given that both buyers and sellers might use this 

cost as a partial basis to value a home.39

 

 

Additionally, the one other hedonic analysis of PV selling price premiums (which used 

reasonably similar models as those employed here but a different dataset, concentrating only on 

homes in the San Diego metropolitan area) found a similar result (Dastrop et al., 2010).  In their 

analysis of 279 homes that sold with PV systems installed in San Diego (our model only 

contained 35 homes from this area40 Table 5 – See ), Dastrop et al. estimated an average increase 

in selling price of $14,069, which, when divided by their mean PV system size of 3.2 kW, 

implies an effect of  $4.4/watt.41

                                                 
39 Although not investigated here, one possible reason for sales price premiums that are above net installed costs is 
that buyers of PV homes may in some cases price in the opportunity cost of avoiding having to do the PV 
installation themselves, which might be perceived as complex.  Moreover, a PV system installation that occurs after 
the purchase of the home would likely be financed outside the first mortgage and would therefore loose valuable 
finance and tax benefits, thereby making the purchase of a PV home potentially more attractive that installing a PV 
system later, even if at the same cost.  

 

40 Though we identified a higher number of PV homes that sold in the San Diego metropolitan area in our dataset, 
the home and site characteristics provided to us from the real estate data provider did not contain information on the 
year of the sale and therefore were not usable for the purpose of our analysis. 
41 In a different model, Dastrop et al. (2010) estimated an effect size of $2.4/watt but, for reasons not addressed here, 
this estimate is not believed to be as robust.  
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Table 8: Fixed and Continuous Base Hedonic Model Results with Robustness Tests 

 
 

4.2.  New and Existing Home Model Results 

Turning from the full dataset to one specific to the home type, we estimate continuous effects 

models for new and existing homes (see equation (2)).  These results are shown in Table 9, with 

Model 3 the base model for new homes and Model 4 the base model for existing homes.  Also 

Base Robustness Robustness Base Robustness Robustness Robustness
Matched Subdivision Matched Subdivision PV Only

Model 1 Model 1Ra Model 1Rb Model 2 Model 2Ra Model 2Rb Model 2Rc
pv 0.036*** 0.024*** 0.035***

(0.005) (0.006) (0.005)
size 0.012*** 0.010*** 0.012*** 0.013*

(0.002) (0.002) (0.001) (0.008)
sqft_1000 0.253*** 0.205*** 0.250*** 0.253*** 0.205*** 0.250*** 0.224***

(0.001) (0.006) (0.001) (0.001) (0.006) (0.001) (0.010)
lt1acre 0.417*** 0.514*** 0.414*** 0.416*** 0.510*** 0.413*** 0.441***

(0.009) (0.040) (0.010) (0.009) (0.040) (0.010) (0.066)
acre 0.016*** 0.013 0.015*** 0.016*** 0.013 0.015*** -0.002

(0.002) (0.011) (0.003) (0.002) (0.010) (0.003) (0.012)
ages2 -0.004*** -0.006*** -0.004*** -0.004*** -0.006*** -0.004*** -0.008***

(0.0002) (0.0012) (0.0002) (0.0002) (0.0012) (0.0002) (0.0030)
ages2sqr 0.00003*** 0.00004*** 0.00003*** 0.00003*** 0.00004*** 0.00003*** 0.00004***

(0.000003) (0.000012) (0.000003) (0.000003) (0.000012) (0.000003) (0.000033)
bgre_100 0.003*** 0.015*** 0.003*** 0.003*** 0.015*** 0.003*** 0.013***

(0.001) (0.004) (0.001) (0.001) (0.004) (0.001) (0.005)
intercept 12.703*** 12.961*** 12.710*** 12.702*** 12.957*** 12.710*** 12.842***

(0.010) (0.044) (0.012) (0.010) (0.043) (0.012) (0.073)
Numbers in parenthesis are standard errors, *** p<0.01, ** p<0.05, * p<0.1
Results for subdivision, block group, and quarterly fixed effect variables are not  
reported here, but are available upon request from the authors

Total n 72,319 13,329 72,319 72,319 13,329 72,319 1,192

Adjusted R2 0.93 0.95 0.94 0.93 0.95 0.94 0.93
n (pv homes) 1,894 1,465 1,894 1,894 1,465 1,894 1,192
Mean non-pv asp2 480,862$   480,533$     480,862$     480,862$     480,533$     480,862$     475,811$     
Mean size (kW) 3.1 3.0 3.1 3.1 3.0 3.1 2.7
Estimated $/Watt 5.5$           3.9$             5.4$             5.8$             4.8$             5.6$             6.4$             

ContinuousFixed

PV Only Model Notes: Mean non-pv asp2 amount shown is actually the mean PV asp2.  Sample is limited to 
blockgroups with more than one PV home
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shown are the results from the robustness tests using the coarsened exact matching procedure and 

the combined subdivision-block group delineations, as Models 3Ra and 3Rb, respectively, for 

new homes, and as Models 4Ra and 4Rb, respectively, for existing homes.   

 

The coefficient of interest, SIZE, is statistically significant at or below the 10% level in all of the 

new home models and at the 1% level in all of the existing home models.  Estimates for the 

average $/watt increase in selling prices as a result of PV systems (as summarized in Figure 3, 

which also includes the results presented earlier for all homes, Models 2, 2Ra, and 2Rb) for new 

homes are quite stable, ranging from $2.3 to $2.6/watt.  In comparison, for PV sold with existing 

homes, not only are the selling price impacts found to be higher, but their range across the three 

models is somewhat greater, ranging from $ 6.4 to $7.7/watt. 

Figure 3: New and Existing Home Base Model Results with Robustness Tests 

 
 

Though the reasons for the apparent discrepancy in selling price impacts between new and 

existing homes are unclear, and warrant future research, they might be explained, in part, by the 

difference in average net installed costs, which, from 2007 to 2009, were approximately 

$5.2/watt for existing homes and $4.2/watt for new homes in California (derived from the dataset 

used for Barbose et al., 2010).  The gap in net installed costs between new and existing homes is 
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Note: Error bars represent the 90% confidence intervals for the underlying sale price premium (% change in sale price) and do not 
include variation in either the mean sale price or mean system size, both of which are used to calculate the $/watt premium. 
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not wide enough to fully account for these findings, however, with the model estimates for PV 

selling price premiums below the average net installed costs for new homes and above the 

average net installed costs for existing homes.42

 

  

Several alternative explanations for the disparity between new and existing home premiums exist.  

As discussed previously, there is evidence that builders of new homes might discount premiums 

for PV if, in exchange, PV systems provide other benefits for new home developers, such as 

greater product differentiation and increased the sales velocity, thus decreasing overall carrying 

costs (Dakin et al., 2008; SunPower, 2008). Further, sellers of new homes with PV might be 

reluctant to aggressively increase home sale prices for installed PV systems because of the 

burgeoning state of the market for PV homes and concern that more aggressive pricing could 

even slow home sales. Additionally, because many builders of new homes found that offering PV 

as an option, rather than a standard feature, posed a set of difficulties (Farhar et al., 2004b; Dakin 

et al., 2008), it has been relatively common in past years for PV to be sold as a standard feature 

on homes (Dakin et al., 2008).  This potentially affects the valuation of PV systems for two 

reasons.  First, because sales agents for the new PV homes have sometimes been found to either 

not be well versed in the specifics of PV and felt that selling a PV system was a new sales pitch 

(Farhar et al., 2004b) or to have combined the discussion of PV with a set of other energy 

features (Dakin et al., 2008), up-selling the full value of the PV system as a standard product 

feature might not have been possible.  Secondly, the average sales price of new homes in our 

dataset is lower than the average sales price of existing homes: to the extent that PV is 

considered a luxury good, it may be somewhat less-highly valued for the buyers of these homes.    

 

These downward influences for new homes are potentially contrasted with analogous upward 

influences for existing homes.  Related, buyers of existing homes with PV may - to a greater 

degree than buyers of the less expensive new homes in our sample - be self selected towards 

those who place particular value on a PV home, and therefore value the addition more.  Finally, 

in contrast to new home sellers, who might not be familiar with the intricacies and benefits of the 
                                                 
42 A small number of “affordable homes” (n = 7) are included in the new PV homes subset, which, as a group, 
appear to have a slight downward yet inconsequential effect on the overall sales premium results, and therefore were 
not investigated further herein.  If the number of affordable homes with PV was significant in future research, those 
effects would best be controlled for directly. 
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PV system, existing home sellers are likely to be very familiar with the particulars of the system 

and its benefits, and therefore might be able to “up-sell” it more effectively.   

 

These possible influences, in combination, may explain the difference in average PV premium 

between new and existing homes.  The present analysis did not seek to disentangle or evaluate 

these specific drivers, however, leaving that important effort for future research. 

Table 9: New and Existing Home Base Hedonic Model Results with Robustness Tests 

 
 

Base Robustness Robustness Base Robustnes Robustness
Matched Subdivision Matched Subdivision

Model 3 Model 3Ra Model 3Rb Model 4 Model 4Ra Model 4Rb
size 0.006* 0.006* 0.006** 0.014*** 0.011*** 0.012***

(0.003) (0.003) (0.003) (0.002) (0.002) (0.002)
sqft_1000 0.247*** 0.190*** 0.250*** 0.256*** 0.238*** 0.251***

(0.002) (0.006) (0.002) (0.002) (0.015) (0.002)
lt1acre 0.536*** 0.279*** 0.517*** 0.373*** 0.426*** 0.376***

(0.019) (0.073) (0.024) (0.010) (0.046) (0.012)
acre -0.007 0.338*** -0.009* 0.019*** 0.011 0.017***

(0.005) (0.027) (0.005) (0.002) (0.011) (0.003)
ages2 -0.010 0.081*** -0.010* -0.005*** -0.006*** -0.005***

(0.006) (0.017) (0.006) (0.000) (0.002) (0.000)
ages2sqr 0.00768*** -0.02443*** 0.00715*** 0.00004*** 0.00004*** 0.00004***

(0.001676) (0.004407) (0.001604) (0.000003) (0.000014) (0.000004)
bgre_100 0.008*** 0.027*** 0.007*** 0.002 -0.002 0.002

(0.001) (0.003) (0.001) (0.001) (0.009) (0.001)
intercept 12.651*** 12.585*** 12.627*** 12.820*** 13.023*** 12.833***

(0.022) (0.066) (0.025) (0.013) (0.077) (0.014)
Numbers in parenthesis are standard errors, *** p<0.01, ** p<0.05, * p<0.1
Results for subdivision, block group, and quarterly fixed effect variables are not  
reported here, but are available upon request from the authors

Total n 27,873 8,068 27,873 44,384 4,887 44,384

Adjusted R2 0.94 0.94 0.94 0.93 0.95 0.94
n (pv homes) 935 802 935 897 618 897
Mean non-pv asp2 397,265$    399,162$        397,265$     532,645$    590,428$    532,645$     
Mean size (kW) 2.5 2.4 2.5 3.8 3.7 3.8
Estimated $/Watt 2.3$            2.6$                2.6$             7.7$            6.4$            6.5$             

Existing HomesNew Homes  
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4.2.1. Difference-in-Difference Model Results 

Delving deeper into PV system impacts on existing homes, Table 10 (and Figure 4) shows the 

results of the base Difference-in-Difference Model 5 as well as results from the two robustness 

tests (all of which can be compared to Models 4, 4Ra, and 4rb above, as is done in Figure 4).  As 

a reminder, one robustness model limited the differences in sales dates between the first and 

second sales to five years (Model 5Rb), and the other robustness model used the combined 

subdivision-block group delineations as fixed effects variables (Model 5Rc).  The variables of 

interest are PVH, SALE2 and especially PVS.   

 

PVH estimates the difference in the first sale prices of homes that will have PV installed (as of 

the second sale date) relative to non-PV homes.  The three models are consistent in their 

estimates, showing approximately a 2% premium for “future” PV homes, though only two of 

these estimates are statistically significant, and then only at the 10% level. Regardless, this 

finding suggests that PV homes tend to sell for somewhat more even before the installation of 

PV, presumably as a result of other amenities that are correlated with the (ultimate) installation 

of PV (such as, potentially, energy efficiency features). SALE2 estimates the price appreciation 

trend between the first and second sales for all homes.  The coefficient for this variable is 

significant at the 1% level, and is fairly stable across the models, indicating a clear general trend 

of price increases, over and above inflation adjustments, of approximately 2% to 2.5% between 

the first and second sales.   

 

Finally, and most importantly, homes with PV systems installed on them as of the second sale - 

after controlling for any inherent differences in first sale prices (PVH) and any trend between the 

first and second sales (SALE2) - show statistically significant sale price premiums of 

approximately 5 to 6%.  These premiums equate to an increase in selling prices of approximately 

$6/watt for existing homes, closely reflecting the results presented earlier for the hedonic models 

in Table 9 and Figure 3.  For comparison purposes, both sets of results are presented in Figure 4.   

 

The premium for existing PV homes as estimated in the DD Models 5, 5Ra, and 5Rb and both 

robustness tests for the hedonic model (using the “matched” and “subdivision” datasets, Models 

4Ra and 4Rb respectively) are consistently between $6 and $6.5/watt and are in line with – 
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though slightly higher than - the mean net installed costs of PV on existing homes in California 

of approximately $5.2/watt from 2007 through 2009.  The base hedonic existing home model, on 

the other hand, estimates a higher premium of $7.7/watt.  One possible explanation for this 

inconsistency is that the two robustness tests for the hedonic model and the various difference-in-

difference models are less likely to be influenced by either selection or omitted variable bias than 

the base hedonic model.  Regardless of the absolute magnitude, a sizable premium for existing 

PV homes over that garnered by new PV homes is clearly evident in these and the earlier results. 

Figure 4: Existing Home Hedonic and Difference-in-Difference Model Results with 

Robustness Tests 
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Table 10: Difference-in-Difference Model Results 

 
 

4.3. Age of PV System for Existing Home Hedonic Model Results 

To this point, the marginal impacts to selling prices of each additional kW of PV added to 

existing homes have been estimated using the full dataset of existing homes, which has produced 

an average effect, regardless of the age of the PV system.  As discussed previously, it is 

Base Robustness Robustness
Subdivision Sddif < 5 

Model 5 Model 5Ra Model 5Rb
pvh 0.022* 0.024 0.022*

(0.013) (0.021) (0.012)
sale2 0.023*** 0.026*** 0.019***

(0.002) (0.002) (0.002)
pvs 0.051*** 0.061** 0.049***

(0.017) (0.027) (0.015)
sqft_1000 0.255*** 0.256*** 0.251***

(0.002) (0.002) (0.002)
lt1acre 0.374*** 0.385*** 0.377***

(0.011) (0.013) (0.012)
acre 0.012*** 0.009** 0.011***

(0.003) (0.004) (0.003)
age -0.005*** -0.005*** -0.005***

(0.0002) (0.0003) (0.0003)
agesqr 0.00004*** 0.00004*** 0.00004***

(0.000003) (0.000003) (0.000003)
bgre_100 0.002* 0.000 0.001

(0.001) (0.001) (0.001)
intercept 12.677*** 12.594*** 12.694***

(0.013) (0.015) (0.014)

Total n 28,313 19,265 28,313

Adjusted R2 0.93 0.94 0.94
n (pv homes) 394 159 394
Mean non-pv asp2 488,127$      450,223$      488,127$      
Mean size (kW) 4.0 4.3 4.0
Estimated $/Watt 6.2$              6.3$              6.0$              

Difference-in-Difference

Numbers in parenthesis are standard errors. *** p<0.01, 
** p<0.05, * p<0.1.  Results for subdivision, block group, 
and quarterly fixed effect variables are not reported here, 
but are available upon request from the authors
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conceivable that older PV systems would garner lower premiums than newer, similarly sized 

systems.  To test this directly, a base model is constructed - see equation (4) - that estimates the 

marginal impacts for three age groups of PV systems:  no more than one year old at the time of 

sale; between two and four years old; and five or more years old.  Results from this model as 

well as two robustness tests, using the coarsened exact matching procedure and the combined 

subdivision-block group delineations, are shown in Table 11 as Models 6, 6Ra, and 6Rb, 

respectively. 

 

Each model finds statistically significant differences between PV and non-PV homes for each 

age group, and more importantly, premium estimates for newer PV systems are - as expected -

larger than those for older PV systems and are monotonically ordered between groups, providing 

some evidence that older systems are being discounted by the buyers and sellers of PV homes.  

Specifically, the three models estimate an average premium for PV systems that are one year or 

less in age of $8.3-9.3/watt, whereas those same models estimate an average premium of $4.1-

6.1/W for systems that are five or more years old. 

4.4.  Returns to Scale Hedonic Model Results 

In the previous modeling, the marginal impacts to selling prices of each additional kW of PV in 

the continuous models have been estimated using a linear relationship.  To test whether a non-

linear relationship may be a better fit, a SIZE squared term is added to the model as shown in 

equation (5).  Similarly, decreasing or increasing returns to scale might be related to other house 

characteristics, such as the size of the home (i.e., square feet).  This hypothesis is explored using 

equation (6).  Both model results are shown in Table 11 as Model 7 and 8, respectively.   

 

Both models find small and non-statistically significant relationships between their interacted 

variables, indicating a lack of compelling evidence of a non-linear relationship between PV 

system size and selling price in the dataset, and a lack of compelling evidence that the linear 

relationship is affected by the size of the home.  As such, the impact of PV systems on residential 

selling prices appears to be well approximated by a simple linear relationship, while the size of 

the home is not found to impact the PV sales price premium.  In combination, these results seem 

to suggest that while California’s tiered rate structures may lead to energy bill savings from PV 
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investments that vary non-linearly with PV system size and also vary by home size, those same 

rate structures have not – to this point – led to any clear impact on the PV premium garnered at 

the time of home sale.  Similarly, though larger PV systems may be installed at a discount to 

smaller ones on a $/watt basis, and though any marginal green cachet that exists may diminish 

with system size, those possible influences are not apparent in the results presented here. 
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Table 11: Age of PV System and Return to Scale Hedonic Model Results 

 

Base Robustness Robustness Size Square Feet
Matched Subdivision

Model 6 Model 6Ra Model 6Rb Model 7 Model 8
size*1 year old 0.016*** 0.016*** 0.013***

(-0.004) (-0.005) (-0.004)
size*2-4 years old 0.015*** 0.010*** 0.013***

(-0.002) (-0.003) (-0.002)
size*5+ years old 0.012*** 0.008** 0.008**

(-0.003) (-0.004) (-0.003)
size 0.008** 0.021***

(0.003) (0.006)
sizesqr 0.001

(0.001)
size*sqft_1000 -0.003

(0.002)
sqft_1000 0.256*** 0.238*** 0.251*** 0.253*** 0.253***

(0.002) (0.015) (0.002) (0.001) (0.001)
lt1acre 0.373*** 0.426*** 0.376*** 0.416*** 0.416***

(0.010) (0.046) (0.012) (0.009) (0.009)
acre 0.019*** 0.010*** 0.017*** 0.016*** 0.016***

(0.002) (0.011) (0.003) (0.002) (0.002)
ages2 -0.005*** -0.006*** -0.005*** -0.004*** -0.004***

(0.000) (0.002) (0.000) (0.000) (0.000)
ages2sqr 0.000*** 0.000*** 0.000*** 0.000*** 0.000***

(0.000) (0.000) (0.000) (0.000) (0.000)
bgre_100 0.002*** -0.002*** 0.002*** 0.003*** 0.003***

(0.001) (0.009) (0.001) (0.001) (0.001)
intercept 12.820*** 13.024*** 12.834*** 12.702*** 12.701***

(0.013) (0.078) (0.014) (0.010) (0.011)
Numbers in parenthesis are standard errors. *** p<0.01, ** p<0.05, * p<0.1

Total n 44,384 4,887 44,384 72,319 72,319

Adjusted R2 0.93 0.95 0.94 0.93 0.93
n (pv homes) 897 618 897 1,894 1,894
Mean non-pv asp2 532,645$      590,428$      532,645$      480,862$      480,862$      
Mean size (kW) 3.8 3.7 3.8 3.1 3.1
Estimated $/Watt $8.3 - $6.1 $9.3 - $4.9 $7.0 - $4.1 6.3$              6.4$              

Returns to ScaleAge of PV Systems for Existing Homes

Note: $/watt estimates for Returns to Scale models include the non-statistically 
significant interaction coefficients and therefore should be interpreted with caution

Results for subdivision, block group, and quarterly fixed effect variables are not  
reported here, but are available upon request from the authors
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5. Conclusions 

The market for solar PV is expanding rapidly in the U.S.  Almost 100,000 PV systems have been 

installed in California alone, more than 90% of which are residential.  Some of those “PV homes” 

have sold, yet little research exists estimating if those homes sold for significantly more than 

similar non-PV homes.  Therefore, one of the claimed incentives for solar homes - namely that a 

portion of the initial investment into a PV system will be recouped if the home is sold – has, to 

this point, been based on limited evidence.  Practitioners have sometimes transferred the results 

from past research focused on energy efficiency and energy bills more generally and, while 

recent research has turned to PV that research has so far focused largely on smaller sets of PV 

homes concentrated in certain geographic areas.  Moreover, the home sales price effect of PV on 

a new versus an existing home has not previously been the subject of research.  Similarly 

unexplored has been whether the relationship of PV system size to home sales prices is linear, 

and/or is affected by either the size of the home or the age of the PV system.  

 

This research has used a dataset of approximately 72,000 California homes, approximately 2,000 

of which had PV systems installed at the time of sale, and has estimated a variety of different 

hedonic and repeat sales models to directly address the questions outlined above.  Moreover, an 

extensive set of robustness tests were incorporated into the analysis to test and bound the 

possible effects and increase the confidence of the findings by mitigating potential biases.  The 

research was not intended to disentangle the various individual underlying influences that might 

dictate the level of the home sales price premium caused by PV, such as, energy costs savings, 

the net (i.e., after applicable state and federal incentives) installed cost of the PV system, the 

possible presence of a green cachet, or seller attributes.  Instead, the goal was to establish 

credible estimates for the aggregate PV residential sale price effect across a range of different 

circumstances (e.g., new vs. existing homes, PV system age). 

 

The research finds strong evidence that homes with PV systems in California have sold for a 

premium over comparable homes without PV systems.  More specifically, estimates for average 

PV premiums range from approximately $3.9 to $6.4 per installed watt (DC) among a large 

number of different model specifications, with most models coalescing near $5.5/watt.  That 
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value corresponds to a premium of approximately $17,000 for a relatively new 3,100 watt PV 

system (the average size of PV systems in the study).  These results are similar to the average 

increase for PV homes found by Dastrop et al. (2010), which used similar methods but a 

different dataset, one that focused on homes in the San Diego metropolitan area.  Moreover, 

these average sales price premiums appear to be comparable to the average net (i.e., after 

applicable state and federal incentives) installed cost of California residential PV systems from 

2001-2009 (Barbose et al., 2010) of approximately $5/watt, and homeowners with PV also 

benefit from electricity cost savings after PV system installation and prior to home sale.   

   

Although the results for the full dataset from the variety of models are quite similar, when the 

dataset is split among new and existing homes, PV system premiums are found to be markedly 

affected, with new homes demonstrating average premiums of $2.3-2.6/watt, while existing 

homes are found to have average premiums of $6-7.7/watt.  Possible reasons for this disparity 

between new and existing PV homes include: differences in underlying net installation costs for 

PV systems; a willingness among builders of new homes to accept a lower PV premium because 

PV systems provide other benefits to the builders in the form of product differentiation, leading 

to increased sales velocity and decreased carrying costs; and, lower familiarity and/or interest in 

marketing PV systems separately from the other features of new homes contrasted with a likely 

strong familiarity with the PV systems among existing home sellers. 

 

The research also investigated the impact of PV system age on the sales price premium for 

existing homes, finding - as would be expected - evidence that older PV systems are discounted 

in the marketplace as compared to newer PV systems.  Finally, evidence of returns to scale for 

either larger PV systems or larger homes was investigated but not found. 

 

In addition to benchmarking the results of this research to the limited previous literature 

investigating the sales price premiums associated with PV, our results can also be compared to 

previous literature investigating premiums associated with energy efficiency (EE) or, more 

generally, energy cost savings.  A number of those studies have converted this relationship into a 

ratio representing the relative size of the home sales price premium to the annual savings 

expected due to energy bill reductions.  These ratios have ranged from approximately 7:1 
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(Longstreth et al., 1984; Horowitz and Haeri, 1990), to 12:1 (Dinan and Miranowski, 1989), to 

approximately 20:1 (Johnson and Kaserman, 1983; Nevin et al., 1999; Eichholtz et al., 2009), 

and even  as high as 31:1 (Nevin and Watson, 1998). 

 

Although actual energy bill savings from PV for the sample of homes used for this research were 

not available, a rough estimate is possible, allowing for a comparison to the previous results for 

energy-related homes improvements and energy efficiency.  Specifically, assuming that 1,425 

kWh (AC) are produced per year per kW (DC) of installed PV on a home (Barbose et al., 2010; 

CPUC, 2010)43

Figure 5

 and that this production offsets marginal retail electricity rates that average 

$0.20/kWh (AC) (Darghouth et al., 2010), each watt (DC) of installed PV can be estimated to 

save $0.29 in annual energy costs.  Using these assumptions, the $/watt PV premium estimates 

reported earlier can be converted to sale price to annual energy savings ratios (see ).   

 

A $3.9 to $6.4/watt premium in selling price for an average California home with PV installed 

equates to a 14:1 to 22:1 sale price to energy savings ratio, respectively.  For new homes, with a 

$2.3-2.6/watt sale price premium, this ratio is estimated to be 8:1 or 9:1, and for existing homes, 

with an overall sale price premium range of $6-7.6/watt, the ratio is estimated to range from 21:1 

to 26:1.  Without actual

 

 energy bill savings, these estimates are somewhat speculative, but 

nonetheless are broadly consistent with the previous research that has focused on EE-based home 

energy improvements. 

                                                 
43 The 1,425 kWh (AC) estimate is based on a combination of a 19% capacity factor (based on AC kWh and CEC-
AC kW) from CPUC (2010), and an 0.86 conversion factor between CEC-AC kW and DC kW (Barbose et al., 
2010). 
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Figure 5: Estimated Ratios of Sale Price Premium to Annual Energy Cost Savings  

 
 

Although this research finds strong evidence that homes with PV systems in California have sold 

for a premium over comparable homes without PV systems, the extrapolation of these results to 

different locations or market conditions (e.g., different retail rates or net installed costs) should 

be done with care. 

 

Finally, additional questions remain that warrant further study.  Perhaps most importantly, 

although the dataset used for this analysis consists of almost 2,000 PV homes, the study period 

was limited to sales occurring prior to mid-2009 and the dataset was limited to California.  

Future research would therefore ideally include more-recent sales from a broader geographic 

area to better understand any regional/national differences that may exist as well as any changes 

to PV premiums that occur over time as the market for PV homes and/or the net installed cost of 

PV changes.  More research is also warranted on new versus existing homes to better understand 

the nature and underlying drivers for the differential premium discovered in this research; in 

addition to further hedonic analysis, that research could include interviewing/surveying home 

builders and buyers and exploring the impact of demographic, socio-economic, and others 

factors on the PV premium.  
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Additionally, future research might compare sales price premiums to actual annual home energy 

cost savings, to not only to explore the sale price to annual energy cost savings ratio directly, but 

also to explore if a green cachet exists over and above any sale price premiums that would be 

expected from energy cost savings alone.  Further, house-by-house PV system and other 

information not included in the present study might be included in future studies, such as the 

actual net installed costs of PV for individual households, rack-mounted or roof-integrated 

distinctions as well as other elements of PV system design, the level of energy efficiency of the 

home, whether the home has a solar hot water heater, whether the PV system is customer or 3rd 

party owned at the time of sale, and if the homeowner can sell the green attributes the system 

generates.44

                                                 
44 3rd party owned PV systems would not be expected to command the same sort of premium as was discovered here.  
Although the level of penetration of 3rd party owners in our data was not significant (below 10%), and therefore 
would likely have not influenced our results in a substantive way, any future research, using more recent data, must 
account for their inclusion specifically. 

  Such research could elucidate important differences in PV premiums among 

households, PV system designs and state and federal programmatic designs, as well as bolster 

confidence in the magnitude of the PV premium estimated here.  Finally, and more generally, 

additional research could investigate the impact of PV systems on the time homes remain on the 

market before sale, a factor that may be especially important for large developers and sellers of 

new homes.
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